

Markscheme

May 2017

Physics

Higher level

Paper 2

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Q	uestion	Answers	Notes	Total
1.	а	correct use of kinematic equation/equations ✓ 148.5 <i>or</i> 149 <i>or</i> 150 «m» ✓	Substitution(s) must be correct.	2
	b	$a = \frac{27}{11}$ or 2.45 «m s ⁻² » \checkmark $F - 160 = 492 \times 2.45 \checkmark$ $1370 \text{ «N» } \checkmark$	Could be seen in part (a). Award [0] for solution that uses a =9.81 m s ⁻²	3

- 3 -

Question	Answers	Notes	Total
С	ALTERNATIVE 1 «work done to launch glider» = 1370×149 « = 204 kJ» ✓ «work done by motor» = $\frac{204 \times 100}{23}$ ✓ «power input to motor» = $\frac{204 \times 100}{23} \times \frac{1}{11} = 80$ or 80.4 or 81 k«W» ✓	Award [2 max] for an answer of 160 k«W».	
	ALTERNATIVE 2 use of average speed 13.5 m s ⁻¹ ✓ «useful power output» = force×average speed «= 1370×13.5» ✓ power input = $<$ 1370×13.5× $\frac{100}{23}$ =» 80 or 80.4 or 81k«W» ✓		3
	ALTERNATIVE 3 work required from motor = KE + work done against friction $\ll 0.5 \times 492 \times 27^2 + (160 \times 148.5)$ » = 204 «kJ» ✓		
	«energy input» = $\frac{\text{work required from motor} \times 100}{23}$ power input = $\frac{883000}{11}$ = 80.3 k«W» ✓		

Question	Answers	Notes	Total
d	direction of motion	Award [1 max] if forces do not touch the dot, but are otherwise OK.	2
	drag correctly labelled and in correct direction ✓		
	weight correctly labelled and in correct direction <i>A</i> no other incorrect force shown ✓	ND	

C	Question		Answers	Notes	Total
2.	а		force/acceleration proportional to displacement «from equilibrium position» ✓	Do not award marks for stating the defining equation for SHM. Award [1 max] for a ω -= 2x with a and x defined.	
			and directed towards equilibrium position/point		2
			OR		
			and directed in opposite direction to the displacement from equilibrium position/point ✓		
	b	i	frequency of buoy movement = $\frac{3.4}{35}$ or 0.097 «Hz» OR time period of buoy = $\frac{35}{3.4}$ or 10.3 «s» or 10 «s» \checkmark		3
			$v = \frac{2\pi x_0}{T}$ or $2\pi f x_0 = \frac{2 \times \pi \times 4.3}{10.3}$ or $2 \times \pi \times 0.097 \times 4.3$		
			2.6 «m s ⁻¹ » ✓		

C	Questi	on	Answers	Notes	Total
	b	ii	peaks separated by gaps equal to width of each pulse «shape of peak roughly as shown» ✓ one cycle taking 10 s shown on graph ✓ output power 0 10 20 30 time / s	Judge by eye. Do not accept \cos_2 or \sin_2 graph At least two peaks needed. Do not allow square waves or asymmetrical shapes. Allow ECF from (b)(i) value of period if calculated.	2
	С	i	PE of water is converted to KE of moving water/turbine to electrical energy «in generator/turbine/dynamo» ✓ idea of pumped storage, <i>ie</i> : pump water back during night/when energy cheap to buy/when energy not in demand/when there is a surplus of energy ✓		2

-7 -

Questi	ion	Answers	Notes	Total
C	ii	specific energy available = $\langle gh \rangle 9.81 \times 270 = 2650 \mathrm{Jkg^{-1}} \rangle$ OR $mgh = \frac{1}{2}mv^2$ OR $v^2 = 2gh \checkmark$		2
		v = 73 «ms ⁻¹ » ✓	Do not allow 72 as round from 72.8	
C	iii	total energy = $\ll mgh = 1.5 \times 10^{10} \times 9.81 \times 270 = \text{w} \ 4.0 \times 10^{13} \ \text{wJ}$ OR total energy = $\ll \frac{1}{2}mv^2 = \frac{1}{2} \times 1.5 \times 10^{10} \times (\text{answer (c)(ii)})^2 = \text{w} \ 4.0 \times 10^{13} \ \text{wJ}$ time = $\ll \frac{4.0 \times 10^{13}}{4 \times 2.5 \times 10^8} = \text{w} \ 11.1 \text{h}$ or $4.0 \times 10^4 \text{ s}$	Use of 3.97×10 ¹³ «J» gives 11 h. For MP2 the unit must be present.	2
С	iv	friction/resistive losses in pipe/fluid resistance/turbulence/turbine or generator «bearings» OR sound energy losses from turbine/water in pipe ✓ thermal energy/heat losses in wires/components ✓ water requires kinetic energy to leave system so not all can be transferred ✓	Must see "seat of friction" to award the mark. Do not allow "friction" bald.	2 max

C	uesti	on	Answers	Notes	Total
3.	а		$\frac{1}{2}CV^2 = \frac{1}{2} \times 0.022 \times 24^2 = 6.3 \text{ (J)}$		1
	b		$\frac{1}{100} = e^{-\frac{t}{8.0 \times 0.022}} \checkmark$ $\ln 0.01 = -\frac{t}{8.0 \times 0.022} \checkmark$ $0.81 \text{ «s» } \checkmark$		3
	С	i	$c = \frac{Q}{m \times \Delta T}$ OR $\frac{6.3}{0.00061 \times 28} \checkmark$ $370 \text{ J kg}^{-1} \text{ K}^{-1} \checkmark$	Allow ECF from 3(a) for energy transferred. Correct answer only to include correct unit that matches answer power of ten. Allow use of g and kJ in unit but must match numerical answer, eg: 0.37 J kg ⁻¹ K ⁻¹ receives [1]	2

-9-

Question	Answers	Notes	Total
c ii	ALTERNATIVE 1 some thermal energy will be transferred to surroundings/along connecting wires/to thermometer ✓ estimate «of specific heat capacity by student» will be larger «than accepted value» ✓ ALTERNATIVE 2 not all energy transferred as capacitor did not fully discharge ✓ so estimate «of specific heat capacity by student» will be larger «than accepted value» ✓		2 max

C	Questi	ion	Answers	Notes	Total
4.	а		«light» superposes/interferes ✓		
			pattern consists of «intensity» maxima and minima OR consisting of constructive and destructive «interference» ✓		3
			voltage peaks correspond to interference maxima ✓		
	b	i	$\mathbf{ws} = \frac{\lambda D}{d} = \frac{6.3 \times 10^{-7} \times 5.0}{1.5 \times 10^{-3}} = \mathbf{w} \ 2.1 \times 10^{-3} \mathbf{wm} \mathbf{w}$	If no unit assume m. Correct answer only.	1
	b	ii	correct read-off from graph of 25 m s ✓ $v = \frac{x}{t} = \frac{2.1 \times 10^{-3}}{25 \times 10^{-3}} = 8.4 \times 10^{-2} \text{ m s}^{-1} \text{ w}$ ✓	Allow ECF from (b)(i)	2
	С	i	angular width of diffraction minimum = $\frac{0.13}{5.0}$ «= 0.026 rad» \checkmark slit width = « $\frac{\lambda}{d}$ = $\frac{6.3 \times 10^{-7}}{0.026}$ =» 2.4×10 ⁻⁵ «m» \checkmark	Award [1 max] for solution using 1.22 factor.	2
	С	ii	«beyond the first diffraction minimum» average voltage is smaller ✓	OWTTE	
			«voltage minimum» spacing is «approximately» same OR		2
			rate of variation of voltage is unchanged ✓		

Question	Answers	Notes	Total
d	«reflection at barrier» leads to two waves travelling in opposite directions ✓ mention of formation of standing wave ✓ maximum corresponds to antinode/maximum displacement «of air molecules» OR complete cancellation at node position ✓		2 max

– 12 –

5.	а	4_2lpha OR	These must be seen on the right-hand side of the equation.	
		⁴ ₂ He ✓		2
		²²² ₈₆ Rn ✓		

Question		Answers	Notes	Total 2
Question b	n i	Answers ALTERNATIVE 1 6 days is 5.18×10^5 s \checkmark activity after 6 days is $A_0 e^{-1.4 \times 10^{-11} \times 5.18 \times 10^5} \approx A_0$ OR $A = 0.9999927 A_0$ or $0.9999927 \lambda N_0$ OR states that index of e is so small that $\frac{A}{A_0}$ is ≈ 1 OR	Notes Award [1 max] if calculations/substitutions have numerical slips but would lead to correct deduction. eg: failure to convert 6 days to seconds but correct substitution into equation will give MP2. Allow working in days, but for MP1 must see conversion of λor half-life to day ⁻¹ .	
		OR $A - A_0 \approx 10^{-15} \text{ « s}^{-1} \text{ » } \checkmark$ ALTERNATIVE 2 shows half-life of the order of $10^{11} \text{ s or } 5.0 \times 10^{10} \text{ s } \checkmark$ converts this to year «1600 y» or days and states half-life much longer than experiment compared to experiment \checkmark		

Q	uestic	on	Answers	Notes	Total
	b	ii	alternative 1 use of $A = \lambda N_0$ ✓	Must see correct substitution or answer to 2+ sf for MP3	
			conversion to number of molecules = $nN_A = 3.7 \times 10^{20}$		
			OR		
			initial activity = 5.2×10^9 «s ⁻¹ » \checkmark		
			number emitted = $(6 \times 24 \times 3600) \times 1.4 \times 10^{-11} \times 3.7 \times 10^{20}$ or 2.7×10^{15} alpha particles \checkmark		3
			ALTERNATIVE 2		
			use of $N = N_0 e^{-\lambda t}$		
			$N_0 = n \times N_A = 3.7 \times 10^{20} $		
			alpha particles emitted $\mathbf{w} = \text{number of atoms disintegrated} = N - N_0 = \mathbf{w} N_0 (1 - e^{-\lambda \times 6 \times 24 \times 3600})$		
			or 2.7×10 ¹⁵ alpha particles ✓		

– 14 –

Questi	estion Answers		Notes	Total
С	i	alpha particles highly ionizing OR alpha particles have a low penetration power OR thin glass increases probability of alpha crossing glass OR decreases probability of alpha striking atom/nucleus/molecule ✓	Do not allow reference to tunnelling.	1
C	ii	conversion of temperature to 291 K \checkmark $p = 4.5 \times 10^{-9} \times 8.31 \times \frac{291}{1.3 \times 10^{-5}} $ OR $p = 2.7 \times 10^{15} \times 1.38 \times 10^{-23} \times \frac{291}{1.3 \times 10^{-5}} $ 0.83 or 0.84 «Pa» \checkmark	Allow ECF for 2.7×10 ¹⁵ from (b)(ii).	3

Question	Answers	Notes	Total
d	electron/atom drops from high energy state/level to low state \checkmark energy levels are discrete \checkmark wavelength/frequency of photon is related to energy change or quotes $E = hf$ or $E = \frac{hc}{\lambda}$ and is therefore also discrete \checkmark		3
е	peer review guarantees the validity of the work OR means that readers have confidence in the validity of work ✓		1

– 16 **–**

C	Question		Answers	Notes	Total
6.	а		when an electric field is applied to any material «using a cell etc» it acts to accelerate any free electrons ✓ electrons are the charge carriers «in copper» ✓ metals/copper have many free electrons whereas insulators have few/no free electrons/charge carriers ✓		3
	b	i	area = $\frac{1.7 \times 10^{-8} \times 35 \times 10^{3}}{64}$ «= 9.3×10^{-6} m ² » \checkmark radius = « $\sqrt{\frac{9.3 \times 10^{-6}}{\pi}}$ = » 0.00172 m \checkmark		2
	b	ii	$I_{\text{peak}} \ll \frac{P_{\text{peak}}}{V_{\text{peak}}} \gg =730 \ll A \gg \checkmark$		1

Q	Question		Answers	Notes	Total
	b	iii	resistance of cable identified as $\frac{64}{32} = 2\Omega$	Allow [3] for a solution where the resistance per unit metre is calculated using resistivity and answer to (a) (resistance per unit length of cable $=5.7\times10^{-5}\mathrm{m}$) Award [2 max] if 64 Ω used for resistance (answer×32).	3
			plausible answer calculated using $\frac{2I^2}{35000}$ «plausible if in range 10 W m ⁻¹ to 150 W m ⁻¹ when quoted answers in (b)(ii) used» 31 «W m ⁻¹ » \checkmark	An approach from $\frac{V^2}{R}$ or VI using 150 kV is incorrect (award R [0]), however allow this approach if the pd across the cable has been calculated (pd dropped across cable is 1.47 kV).	
	С		$ \frac{\text{response to (b)(ii)}}{2\sqrt{2}} $ » = 260 « A » ✓		1

– 18 **–**

Q	Question		Answers	Notes	Total
	d		wires/cable attract whenever current is in same direction ✓	Award [1 max] if response suggests that there is repulsion between cables at any stage in cycle.	
			charge flow/current direction in both wires is always same «but reverses every half cycle» ✓		2 max
			force varies from 0 to maximum ✓		
			force is a maximum twice in each cycle ✓		
	е	i	higher voltage gives lower current ✓		
			«energy losses depend on current» hence thermal/heating/power losses reduced ✓		2
	е	ii	laminated core ✓	Do not allow "wires are laminated".	1

– 19 **–**

C	Questi	on	Answers	Notes	Total
7.	а	i	wavelength = $\frac{hc}{E} = \frac{1.99 \times 10^{-25}}{3.5 \times 10^{-19}} = \text{ s.} 5.7 \times 10^{-7} \text{ m/s}$	If no unit assume m.	1
	а	ii	«potential» energy is required to leave surface ✓ all/most energy given to potential «so none left for kinetic energy» ✓	Do not allow reference to "binding energy". Ignore statements of conservation of energy.	2
	b		energy surplus = $1.7 \times 10^{-19} \text{ J} \checkmark$ $v_{\text{max}} = \sqrt{\frac{2 \times 1.7 \times 10^{-19}}{9.1 \times 10^{-31}}} = 6.1 \times 10^{5} \text{ «m s}^{-1} \text{»} \checkmark$	Award [1 max] if surplus of 5.2×10 ⁻¹⁹ J used (answer: 1.1×10 ⁶ m s ⁻¹)	2
	С	i	«same intensity of radiation so same total energy delivered per square metre per second» light has higher photon energy so fewer photons incident per second ✓	Reason is required	1
	С	ii	1:1 correspondence between photon and electron ✓ so fewer electrons per second ✓ current smaller ✓	Allow ECF from (c)(i) Allow ECF from MP2 to MP3.	3

- 20 -

C	Question		Answers	Notes	Total
8.	а		potential is defined to be zero at infinity ✓ so a positive amount of work needs to be supplied for a mass to reach infinity ✓		2
	b	i	$V_{\rm S} = -\frac{GM}{r}$ so $r \times V_{\rm S}$ «= -GM» = constant because G and M are constants \checkmark		1
	b	ii	GM = 1.33×10^{20} «J m kg ⁻¹ » \checkmark GPE at Earth orbit «= $-\frac{1.33 \times 10^{20} \times 6.0 \times 10^{24}}{1.5 \times 10^{11}}$ » = «-» 5.3×10^{33} «J» \checkmark	Award [1 max] unless answer is to 2 sf. Ignore addition of Sun radius to radius of Earth orbit.	2

– 21 –

Qu	estic	n	Answers	Notes	Total
	q	iii	work leading to statement that kinetic energy = $\frac{GMm}{2r}$, AND kinetic energy evaluated to be $\ll + \gg 2.7 \times 10^{33} \ll J \gg \checkmark$ energy $\ll = PE + KE = answer to (b)(ii) + 2.7 \times 10^{33} \gg = \ll - \gg 2.7 \times 10^{33} \ll J \gg \checkmark$ statement that kinetic energy is $= -\frac{1}{2}$ gravitational potential energy in orbit \checkmark so energy $\ll = \frac{answer to (b)(ii)}{2} \gg = \ll - \gg 2.7 \times 10^{33} \ll J \gg \checkmark$	Various approaches possible.	2
	b	iv	«KE will initially decrease so» total energy decreases OR «KE will initially decrease so» total energy becomes more negative ✓ Earth moves closer to Sun ✓ new orbit with greater speed «but lower total energy» ✓ changes ellipticity of orbit ✓		2 max

Questi	on	Answers	Notes	Total
С		centripetal force is required ✓ and is provided by gravitational force between Earth and Sun ✓	Award [1 max] for statement that there is a "centripetal force of gravity" without further qualification.	2

- 23 -